If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-x-180=0
We add all the numbers together, and all the variables
8x^2-1x-180=0
a = 8; b = -1; c = -180;
Δ = b2-4ac
Δ = -12-4·8·(-180)
Δ = 5761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{5761}}{2*8}=\frac{1-\sqrt{5761}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{5761}}{2*8}=\frac{1+\sqrt{5761}}{16} $
| (x+1)2+8=4 | | 90b(1+2)=0 | | (7x-19)+(6x+3)=180 | | 5.13x+2-4.1x=3.6x-1.6 | | 3x-37=2 | | 1/3x-5/8=21/5 | | 9i+2=47 | | 5{t+2}=-15 | | y+10/7=5 | | 3(x+4)2−20=16 | | 2/5(10b-5)=-18 | | 2x+16=4x-90 | | 3x-36=-9 | | r-67/4=7 | | 180=3x+(200-2x) | | –2b–3=15 | | 4t+2=5t+6 | | F(2)=12x-7 | | y/7-37=42 | | 2(y-5)=6y+4-2(-3y-1) | | (8x+5)+(2x+5)=180 | | 7g-30=5 | | 2/5(10b-5)=-8 | | -4(7z-12)=3z+62 | | 3x2-8=10x | | 7.8x+3.2=21.14 | | 3(c-4)+5c=12 | | h7=56 | | 5d-21=29 | | 6r+28=94 | | 60-3b=42 | | 5x-24+3x+10=180 |